刘庚鑫、杨曙光、程正迪:Dynamics of Shape-Persisitent Giant Molecules: Zimm-like Melt, Elastic Plateau, and Cooperative Glass-like
发布人:张妮  发布时间:2017-09-15   

论文摘要:Giant molecules are a new class of soft matter having three-dimensional (3D) shapes and composed of chemically linked rigid molecular nanoparticles. Structurally, a 3D cluster of molecular nanoparticles can be one giant molecule or a few giant molecules associated together via specific interactions. The dynamics of clusters that are smaller than a critical diameter (∼5 nm) presents a power law relaxation exponent of 0.7 at the high frequency region corresponding to segmental dynamics. Such scaling is similar to the result of the Zimm model although those clusters are neither chain-like nor in solution. Clusters that are larger than this critical diameter and formed by the association of giant molecules exhibit an elastic plateau due to caging of individual giant molecules. We hypothesize that clusters of such a large size cannot move as a whole, even above the glass transition temperature of the sample. They thus are “cooperative glass-like”. A structural cluster of giant molecules could be abstracted as a dynamical cluster consisting of unlinked but cooperatively mobile beads. As derived in the random first-order transition theory, the cluster loses its mobility and reaches the glassy state when the diameter of the cluster is 6 times larger than the bead diameter. In our cases, we estimate that the critical diameter for these clusters is also approximately 6 times the bead diameter based on the glassy shear modulus of giant molecules. Thus, shape-persistent giant molecules may serve as a bridge between polymers and colloids and a platform to mimic cooperative rearrangements.

  

论文全文链接:  https://pubs.acs.org/doi/10.1021/acs.macromol.7b01058